CASE STUDY

AI-powered映射业务对象检测Accelerator

地理空间图像分析市场预计到2025年将达到80亿美元

UAV, aerial and satellite mapping service providers are competing for the global market – with a rising hunger – for geospatial insights. Automating the feature extraction process is key to accelerating, scaling up and diversifying a location intelligence service portfolio. Cloud-based platforms coupling cutting-edge machine learning research with a user-friendly implementation offer a powerful turnkey and cost-effective solution to those looking to gain competitivity by incorporating artificial intelligence (AI) automation into their workflows.

越来越多的业务依靠位置数据来优化其计划和日常工作或获得第一手市场见解,地理空间图像分析市场有望从2018年的20亿美元上升到80亿美元以上到2025年,根据2019年全球市场见解公司. report. This is a huge opportunity for unmanned aerial vehicle (UAV or ‘drone’), aerial and satellite mapping service providers. The key to capturing a share of this growing market is to offer business solutions focused on specialized geospatial analytics.

有一个渴望地理空间见解的全球市场。

Business and industries in need of geospatial analytics are increasingly diverse. For example:

  • Farmers need to know how many of their plants are underproductive
  • 牧场主需要知道洪水后有多少牛头幸存
  • 保险公司需要知道在暴188asia备用网址风雨中损坏了多少屋顶
  • 电力公司需要知道一个城市188asia备用网址中有多少太阳能电池板
  • 石油公司188asia备用网址需要发现漏油
  • Water companies need to know how many manhole covers are damaged or stolen


应用和用例可能是无限的。所有这些业务都需要他们跟踪的每个对象的数字和位置。

扩展的挑战

Most of the UAV, aerial and satellite mapping service providers we speak with daily excel at producing digital mapping and surveying products. However, delivering geospatial insights derived from these products can be challenging and quickly become a bottleneck when scaling up the production pipeline. No one questions the potential value that these insight-rich geospatial products can add to their service portfolio, but so far they have proven hard to scale.

手动提取客户感兴趣的功能是耗时的,而且昂贵,可以通过吸引其他人力来扩展。通过制定内部AI计划来自动化此过程意味着巨大的投资。雇用高度专业的专业人员 - 机器学习专家,计算机视觉专家和数据科学家 - 对基础设施进行投资,对于中小型无人机服务业务而言,这不是一个选择。一种具有成本效益的解决方案来自动化特征提取过程并增加地理空间分析生产能力是使用皮特拉, a cloud-based AI object detection platform.

合并皮特拉进入无人机,空中或卫星映射业务的生产管道有多个好处。此列表介绍了七个最重要的原因:

1) 100x faster – Reduce turnaround time and increase turnover

首先,AI不仅可以提高项目的准确性,而且还可以减少交付时间。映射,检测和提取数据的整个工作量可能需要几天的时间。取而代之的是,AI驱动的自动检测可以将交货时间从几天缩短到几分钟。此外,通过摆脱重复的手动流程,您可以利用这段时间在新项目上工作或获得新客户。

2)比制定内部AI计划便宜90% - 避免不必要的投资

You don’t need to invest in infrastructure or R&D. GPUs and highly specialized expertise are expensive. For instance, several thousands of dollars are needed to use a high-end GPU virtual machine on cloud services, on top of which the expertise required in-house can quickly bring the expenses to tens of thousands of dollars per month. With an online platform, these are built-in components you can directly leverage on. With Picterra, you get state-of-the-art machine learning algorithms and infrastructure without the need for extra expertise.

这是Picterra的交钥匙解决方案加速映射业务操作的前7个方法。

3) One tool for all – Serve diverse markets with a single tool

Maximize your ROI by using a single tool for all of your feature extraction projects. Thanks to the versatility and flexibility of the object detection algorithms Picterra deploys, you can customize them and count objects such as trees, sheep, solar panels, shipping containers or buildings today. At the same time, you will be able to craft a detector for any other type of object.

4) 95% accuracy – Crack human limitations

AI驱动的平台可以比人更快,更有效地检测物体。它能够在眼睛的眨眼之间覆盖大面积和数十万,数百或数千个物体。除了可以运行的规模外,AI还可以提高检测的准确性。即使是最细致的人,也注定要犯错误,同时大规模进行单调的手动检测。在这里,自动化通过学习功能提供帮助,每次执行时都能准确执行相同的步骤,并将人类专业知识集中在具有挑战性和稀有功能上。

5) 5x cheaper than manual detection – Reduce cost and labour intensity

The same heavy workload being repeated with every project requires more cost and labour intensity to deliver the results in time. In contrast, once created , automated detection can be executed again and again, without additional cost at a much faster pace. By integrating AI in the process, the overall timespan can be reduced which translates directly into cost savings.

6)简化与您的工作流程的集成

您可以在市场上使用任何摄影测量软件产生的卫星图像或正踪上运行AI对象检测,例如Reality Capture,Dronedeploy,Agisoft Metashape,SimAttive Correlator3D或Pix4Dmapper。皮特拉allows you to analyse the detections, derive statistics and generate customized reports you can deliver to your clients. You can also export the detections as georeferenced layers in various formats that are optimized to match your workflow onArcgis和其他GIS软件。

7)在10分钟内构建并运行探测器 - 没有陡峭的学习曲线

最后但并非最不重要的一点是,Picterra平台为您提供了直观的用户界面,使您只需单击几下即可构建和运行自己的探测器。

A single feature extraction project can serve multiple industries.

AI对象检测在作用中

Picterra用于对德国瓦尔德多夫(Walddorf)街区的正骨的内容进行自动分析。在城市场景中绘制了七个对象类别,并将其本地化为本地,从而产生GIS层和一个报告作为输出。

  • 屋顶:最新的探测使地方政府和保险公司对声明价值的差异和正确参数化的差异。188asia备用网址

  • 游泳池:地方政府可以定位游泳池,并将这些信息与建筑许可注册表进行比较。此外,可以发现税收声明差异。

  • 车辆:汽车经销商可以使用此信息来针对营销活动,地方政府计划停车基础设施和道路网络改编以及房地产机构,以发现和评估最常访问的地区和商店窗户。

  • 道路标记:在分析交通事故的地理流行和分配时,最新的检测为当地基础设施和交通机构或保险公司提供了关键见解。188asia备用网址此外,这支持了道路标记的有效维护计划。

  • 太阳能电池板:确定其流行率和地理位置解锁了能源公司和太阳能电池板制造商的关键市场见解。188asia备用网址对可再生能源的供求的优化管理还需要有关太阳能电池板位置的最新信息。

  • 人孔覆盖物:水和公用事业公司需要此信息以计划维护和网络扩展。188asia备用网址

  • Trees: detecting trees in proximity to key assets provides insurance companies with valuable risk assessment information. Detecting trees encroaching on buffer zones is also key to infrastructure planning such as gas pipelines or overhead power lines.


皮特拉offers a powerful, cost-effective, cloud-based object detection solution that can be incorporated in UAV, aerial and satellite mapping pipelines to scale up and diversify location intelligence products and services.

More information

www.picterra.ch

The outputs of the platform include object counts, surface area calculations and georeferenced detections.
Baidu